Indian Statistical Institute, Bangalore		
M.Math II Year, Second Semester		
Mid-Sem Examination		
Advanced Functional Analysis		
Time: 3 hours	February 28, 2011	Instructor: T.S.S.R.K.Rao
		Total Score : $8 \times 5 = 40$

Answer all questions. Show all work. If you are assuming a 'Result' proved in class, state it correctly. It an answer is an immediate consequence of such a 'Result' , that 'Result' also needs to be proved.

- 1. Let X be a topological vector space. $A \subset X$ is said to be totally bounded, if for any neighborhood \cup of 0, there exists a finite set $F \subset A$ such that $A \subset (F + \cup)$. Show that any totally bounded set is bounded and any compact set is bounded.
- 2. Consider C[0, 1]. Show that there is a locally convex topological vector space topology on C[0, 1] that is different from the norm topology. Give all the details of your answer.
- 3. Consider $l^2 = \{\{\alpha_n\}_{n\geq 1} : \Sigma \mid \alpha_n \mid^2 < \infty\}$. Let $U \subset l^2$ be a proper neighborhood of 0. Show that there exists a sequence $x = \{\alpha_n\}_{n\leq 1} \in U$ with infinitely many non-zero coordinates.
- 4. Let $c_0 = \{\{\alpha_n\}_{n \leq 1} : \lim \alpha_n = 0\}$. Let *d* be an invariant matric on c_0 making it a topological vector space. Let *d'* denote the supremum metric on c_0 . Suppose that topologies generated by *d* and *d'* are the same Show that *d* is a complete metric.
- 5. Let $l^1 = \{\{\alpha_n\}_{n \leq 1} : \Sigma \mid \alpha_n \mid < \infty\}$ with the usual norm. Show that this space is separable when equipped with the weak topology.
- 6. Consider $L^1[0, 1]$. Let X be the set of all polynomials in $L^1[0, 1]$, with the usual norm. Give an example if a weak^{*}- bounded set in X^{*} that is not bounded. Give complete details of your answer.
- 7. Let X be a topological vector space with a, balanced and bounded neighborhood of 0. Show that X is metrizable (you may assume that metrization theorem).
- 8. On the space $C_b(\mathbb{R})$ of bounded continuous functions, consider the sequence of semi-norms, $p_n(f) = \sup_{[-n,n]} |f|$. Describe convergent sequences and bounded sets in the topology generated by this family $\{p_n\}_{n\leq 1}$.